

Kinetic Equations

Solution to the Exercises

– 08.04.2021 –

Teachers: Prof. Chiara Saffirio, Dr. Théophile Dolmaire
 Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let f be a measurable function such that $d_f(\gamma) < +\infty$ for any $\gamma > 0$. Let $M > 0$. Define $f_M^-(x) := \chi_{\{|f| \leq M\}}(x) f(x)$ and $f_M^+ := f - f_M^-$. Prove that

$$d_{f_M^-}(\gamma) := \begin{cases} d_f(\gamma) - d_f(M), & \text{if } \gamma < M, \\ 0, & \text{if } \gamma \geq M, \end{cases} \quad (1)$$

$$d_{f_M^+}(\gamma) := \begin{cases} d_f(M), & \text{if } \gamma \leq M, \\ d_f(\gamma), & \text{if } \gamma > M. \end{cases} \quad (2)$$

Proof. Recall that $d_f(\gamma) = |\{x \mid |f(x)| > \gamma\}|$

Let first $\gamma > M$; then if $|f_M^+(x)| > \gamma$ we have that $f_M^+(x) = f(x)$ and therefore

$$d_{f_M^+}(\gamma) = |\{x \mid |f_M^+(x)| > \gamma\}| = |\{x \mid |f(x)| > \gamma\}| = d_f(\gamma). \quad (3)$$

Let then $\gamma \leq M$. If x is such that $|f_M^+(x)| > \gamma$, this implies that $f_M^+(x) \neq 0$ ($\gamma > 0$). Therefore, $f_M^+(x) = f(x)$ and $|f(x)| > M$, meaning

$$d_{f_M^+}(\gamma) = |\{x \mid |f_M^+(x)| > \gamma\}| = |\{x \mid |f(x)| > M\}| = d_f(M). \quad (4)$$

We consider now f_M^- . Let $\gamma \geq M$. If x is such that $|f_M^-(x)| > \gamma$, then we have $f_M^-(x) \neq 0$ and therefore $f_M^-(x) = f(x)$ and $|f(x)| \leq M$. But this gives a contradiction, because $|f(x)| \leq M \leq \gamma < |f(x)|$, which is absurd. Therefore there is not such an x and $d_{f_M^-}(\gamma) = 0$.

Let finally $\gamma < M$. Then

$$|f_M^-(x)| > \gamma, \gamma < M \iff |f(x)| > \gamma, |f(x)| \leq M, \gamma < M \quad (5)$$

$$\iff \gamma < |f(x)| \leq M, \quad (6)$$

and therefore

$$d_{f_M^-}(\gamma) = |\{x \mid |f_M^-(x)| > \gamma\}| = |\{x \mid |f(x)| > M\} \setminus \{x \mid |f(x)| > \gamma\}| \quad (7)$$

$$= d_f(M) - d_f(\gamma). \quad (8)$$

□

Exercise 2

Prove the weak Young inequality for $p = 1$, i.e., that for any $q \in (1, +\infty)$ there exists a constant $C_q > 0$ such that for any $f \in L^1(\mathbb{R}^d)$, $g \in L^{q,\infty}(\mathbb{R}^d)$

$$\|f * g\|_{L^{q,\infty}(\mathbb{R}^d)} \leq C_q \|f\|_{L^1(\mathbb{R}^d)} \|g\|_{L^{q,\infty}(\mathbb{R}^d)}. \quad (9)$$

Proof. Similar as we did in the last exercise session, we first notice that, with g_M^+ and g_M^- defined as above, we get that $\|g_M^-\|_{L^\infty(\mathbb{R}^d)} \leq M$ and therefore

$$|f * g_M^-(x)| \leq \|f\|_{L^1(\mathbb{R}^d)} \|g_M^-\|_{L^\infty(\mathbb{R}^d)} \leq M \|f\|_{L^1(\mathbb{R}^d)}. \quad (10)$$

We then fix $M := \frac{\gamma}{2\|f\|_{L^1(\mathbb{R}^d)}}$; as a consequence we get $d_{f * g_M^-}(\frac{\gamma}{2}) = 0$.

Recall that we saw in class that

$$\|g_M^+\|_{L^1(\mathbb{R}^d)} \leq \frac{q}{q-1} M^{1-q} \|g\|_{L^{q,\infty}(\mathbb{R}^d)}^q, \quad (11)$$

and as a consequence we get

$$\|f * g_M^+\|_{L^1(\mathbb{R}^d)} \leq \|f\|_{L^1(\mathbb{R}^d)} \|g_M^+\|_{L^1(\mathbb{R}^d)} \leq \frac{q}{q-1} M^{1-q} \|f\|_{L^1(\mathbb{R}^d)} \|g\|_{L^{q,\infty}(\mathbb{R}^d)}^q. \quad (12)$$

We therefore get

$$d_{f * g}(\gamma) \leq d_{f * g_M^+}(\frac{\gamma}{2}) + d_{f * g_M^-}(\frac{\gamma}{2}) = d_{f * g_M^+}(\frac{\gamma}{2}) \quad (13)$$

$$\leq \frac{2\|f * g_M^+\|_{L^1(\mathbb{R}^d)}}{\gamma} \leq \frac{2q}{\gamma(q-1)} M^{1-q} \|f\|_{L^1(\mathbb{R}^d)} \|g\|_{L^{q,\infty}(\mathbb{R}^d)}^q \quad (14)$$

$$= \left(\frac{\gamma}{2}\right)^{-q} \|f\|_{L^1(\mathbb{R}^d)}^q \|g\|_{L^{q,\infty}(\mathbb{R}^d)}^q, \quad (15)$$

Which implies

$$\|f * g\|_{L^{1,\infty}(\mathbb{R}^d)} \leq 2 \|f\|_{L^1(\mathbb{R}^d)} \|g\|_{L^{q,\infty}(\mathbb{R}^d)}. \quad (16)$$

□

Exercise 3

Let $[a, b] \subset \mathbb{R}$ be a compact interval. Assume that $f \in C^1([a, b])$ such that $f(x) > 0$ for any $x \in [a, b]$. Suppose that there exists $C > 0$ such that $f' \in C([a, b])$ satisfies

$$f'(x) \leq C f(x) [1 + |\log(f(x))|], \quad \forall x \in [a, b]. \quad (17)$$

Prove that this implies that

$$f(x) \leq \exp((1 + |f(a)|) \exp(C(x-a))), \quad \forall x \in [a, b]. \quad (18)$$

Proof. First of all, notice that there exist $M > 0$ such that $[a, b]$ can be written as

$$[a, b] = \{a\} \cup \bigcup_{j=1}^{M-1} (a_j, a_{j+1}] \quad (19)$$

with $a_1 = a$, $a_N = b$, $f(a_j) = 1$ for all j and $|f(x) - 1| > 0$.

In particular, $f(x) - 1$ cannot change sign in (a_j, a_{j+1}) for any j .

Consider now j fixed. If $f(x) - 1 \leq 0$, we get $f(x) \leq 1$. Given that $x - a \geq 0$ and therefore $e^{(1+|f(a)|)e^{C(x-a)}} \geq 1$, this implies the result in this case. On the other hand, if $f(x) - 1 \geq 0$, this means $|\log(f(x))| = \log(f(x))$. This implies that (17) can be rewritten as

$$\partial_x [\log(1 + \log(f(x)))] \leq C. \quad (20)$$

We can then integrate it explicitly, and recalling that $f(a_j) = 1$ we get

$$\log(1 + \log(f(x))) \leq \log(1 + \log(f(a_j))) + \int_{a_j}^x \partial_x [\log(1 + \log(f(y)))] dy \quad (21)$$

$$\leq \log(1 + \log(f(a_j))) + C(x_j - a_j). \quad (22)$$

Now, the first term is either zero or bounded by $\log(1 + |\log(f(a))|) \geq 0$, and given that $a_j \geq a$ we get

$$\log(1 + \log(f(x))) \leq \log(1 + |\log(f(a))|) + C(x - a). \quad (23)$$

By definition of \log this implies

$$f(x) \leq e^{(1+|f(a)|)e^{C(x-a)}}. \quad (24)$$

□